Fréchet Regression with Semi-supervised Learning and Ensemble Learning

信息来源: 作者:  发布时间:2026-01-09

报告题目:Fréchet Regression with Semi-supervised Learning and Ensemble Learning

主讲人:邱锐博士(北京大学)

时间:2026年1月15日(周四)10:00 a.m.

形式:线上讲座

腾讯会议:449794702

主办单位:统计与数学学院


摘要:

This talk studies Fréchet regression in general metric spaces, motivated by the high cost of acquiring non-Euclidean labels and the need for scalable, theoretically grounded methods. We develop semi-supervised Fréchet regression procedures, which leverage graph distances constructed from both labeled and unlabeled data. We establish convergence rates under regimes with few labeled samples, abundant unlabeled data, and low-dimensional manifold structure, and demonstrate improved performance over supervised methods in simulations and real applications. We further investigate ensemble learning for Fréchet regression by deriving non-asymptotic risk bounds for Fréchet Mondrian forests. Under suitable regularity and smoothness conditions, these forests achieve convergence rates comparable to Euclidean counterparts and outperform individual Fréchet trees, providing a theoretical justification for ensemble benefits in non-Euclidean regression.


主讲人简介:

邱锐,北京大学统计科学中心博雅博士后,电话13476036353。研究方向包括统计机器学习,充分降维以及非欧数据分析。研究工作发表于《Annals of Statistics》,《Journal of the Royal Statistical Society: Series B》,《Journal of Machine Learning Research》等期刊或会议上。2025年“博新计划”入选者,目前正主持国自然青年基金和博士后面上基金,担任《Journal of the American Statistical Association》、《Journal of Machine Learning Research》等多个期刊审稿人。


学科 统计学 讲座时间 2026年1月15日
主讲人 邱锐博士(北京大学) 讲座地点 线上,腾讯会议:449794702